FATIGUE

Carnitine Transports fatty acids into mitochondria; Decreases both mental and physical fatigue in clinical trials.

Chromium Promotes glucose uptake into cells, helping stabilize blood sugar.

Vitamin B3 Dilates blood vessels; increases serotonin.

Vitamin D & Calcium Small trials show benefit with combined supplementation.

Vitamin B2 Effective for migraine prevention, aids mitochondrial energy metabolism.

Magnesium Efficacious for migraine prevention in several trials; magnesium deficiency can cause arterial spasm and its role in neurotransmission may explain the migraine-magnesium depletion link.

Carnitine Implicated in migraine pathophysiology due to its role in mitochondrial energy metabolism.

Lipoic Acid Enhances mitochondrial energy metabolism.

Vitamin C Newly discovered role in neural tissue may explain its clinical benefit in a double blind trial on headache frequency.

Vitamin B12 Scavenges nitric oxide, which is implicated in migraine pathogenesis.

Folate MTHFR gene linked to migraines. This gene raises folate requirements.

Serine Counteracts the overproduction of fatigue-causing stress hormones.

CoQ10 Deficiency causes fatigue due to its role in mitochondrial energy metabolism; therapeutic benefits particularly noticeable in chronic fatigue syndrome.

Vitamin A When cellular levels of vitamin A are low, mitochondrial respiration and ATP production decreases.

Vitamin E Inverse correlation exists between fatigue and vitamin E levels.

Vitamin D Low levels are seen in patients with chronic fatigue syndrome; Deficiency causes reduced muscle strength.

B Vitamins Necessary for converting food into energy; Cofactors in the mitochondrial respiratory chain include B1, B2, B3, B5, B6, B12 and Folate.

Antioxidants Several studies confirm that oxidative stress exacerbates clinical symptoms of fatigue. Mitochondrial dysfunction (inefficient energy metabolism) can be treated therapeutically with antioxidants such as Selenium, Cysteine, α-Lipoic acid and Glutathione, of which unusually low levels are seen in chronic fatigue patients.

Magnesium Required to store energy molecule ATP; Repletion of magnesium in chronic fatigue patients shows clinical improvement in energy levels.

Glutamine Mental and physical fatigue coincides with reduced levels of this amino acid in various tissues. Supplementation makes muscle more sensitive to insulin, increasing energy levels.

Fructose Intolerance Fatigue (and hypoglycemia) are classic symptoms of this condition, since it depletes the main form of cellular energy, ATP.

Asparagine Supplementation of this amino acid delayed fatigue during exercise by decreasing the rate at which glycogen was used up; needed for gluconeogenesis, a process that allows glucose to be made from protein to prevent blood sugar from getting too low.

Biotin Helps liver utilize glycogen for energy. Animal studies confirm that biotin deficiency causes clinical fatigue.

B Vitamins Necessary for converting food into energy; Cofactors in the mitochondrial respiratory chain include B1, B2, B3, B5, B6, B12 and Folate.
REFERENCES

34. Maes M, Mihaylova I et al. In chronic fatigue syndrome, the decreased levels of omega-3 polyunsaturated fatty acids are related to lowered serum zinc and defects in T cell activation. Neuro Endocrinol Lett 2005;26:745-751.

For more references, go to http://www.spectracell.com/online-library-mnt-fatigue-abstracts/